Representation of lateralization and tonotopy in primary versus secondary human auditory cortex.

نویسندگان

  • Dave R M Langers
  • Walter H Backes
  • Pim van Dijk
چکیده

Functional MRI was performed to investigate differences in the basic functional organization of the primary and secondary auditory cortex regarding preferred stimulus lateralization and frequency. A modified sparse acquisition scheme was used to spatially map the characteristics of the auditory cortex at the level of individual voxels. In the regions of Heschl's gyrus and sulcus that correspond with the primary auditory cortex, activation was systematically strongest in response to contralateral stimulation. Contrarily, in the surrounding secondary active regions including the planum polare and the planum temporale, large-scale preferences with respect to stimulus lateralization were absent. Regarding optimal stimulus frequency, low- to high-frequency spatial gradients were discernable along the Heschl's gyrus and sulcus in anterolateral to posteromedial direction, especially in the right hemisphere, consistent with the presence of a tonotopic organization in these primary areas. However, in the surrounding activated secondary areas frequency preferences were erratic. Lateralization preferences did not depend on stimulus frequency, and frequency preferences did not depend on stimulus lateralization. While the primary auditory cortex is topographically organized with respect to physical stimulus properties (i.e., lateralization and frequency), such organizational principles are no longer obvious in secondary and higher areas. This suggests a neural re-encoding of sound signals in the transition from primary to secondary areas, possibly in relation to auditory scene analysis and the processing of auditory objects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of tonotopic organization of the auditory cortex in schizophrenia

Background: Disorganization of tonotopy in the auditory cortex has been described in schizophrenia. Subjects with schizophrenia show little to no spatial organization of responses to different tone frequencies in the auditory cortex. Previous studies have called into question the use of MEG and the M100 response to assess tonotopy. This study seeks to replicate prior results of tonotopic disorg...

متن کامل

Development of functional organization of the pallid bat auditory cortex.

The primary auditory cortex is characterized by a tonotopic map and a clustered organization of binaural properties. The factors involved in the development of overlain representation of these two properties are unclear. We addressed this issue in the auditory cortex of the pallid bat. The adult pallid bat cortex contains a systematic relationship between best frequency (BF) and binaural proper...

متن کامل

Postnatal maturation of primary auditory cortex in the mustached bat, Pteronotus parnellii.

The primary auditory cortex (AI) of adult Pteronotus parnellii features a foveal representation of the second harmonic constant frequency (CF2) echolocation call component. In the corresponding Doppler-shifted constant frequency (DSCF) area, the 61 kHz range is over-represented for extraction of frequency-shift information in CF2 echoes. To assess to which degree AI postnatal maturation depends...

متن کامل

Tonotopic maps in human auditory cortex using arterial spin labeling

A tonotopic organization of the human auditory cortex (AC) has been reliably found by neuroimaging studies. However, a full characterization and parcellation of the AC is still lacking. In this study, we employed pseudo-continuous arterial spin labeling (pCASL) to map tonotopy and voice selective regions using, for the first time, cerebral blood flow (CBF). We demonstrated the feasibility of CB...

متن کامل

Distinct Spatiotemporal Response Properties of Excitatory Versus Inhibitory Neurons in the Mouse Auditory Cortex

In the auditory system, early neural stations such as brain stem are characterized by strict tonotopy, which is used to deconstruct sounds to their basic frequencies. But higher along the auditory hierarchy, as early as primary auditory cortex (A1), tonotopy starts breaking down at local circuits. Here, we studied the response properties of both excitatory and inhibitory neurons in the auditory...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 34 1  شماره 

صفحات  -

تاریخ انتشار 2007